
KRASH: Reproducible CPU Load Generation on Many-Core Machines

Swann Perarnau, Guillaume Huard

INRIA MOAIS Team, LIG Lab, Grenoble University

Context

INew SMP Servers are many-cores, shared among multiple users.
↪→ System dynamic heterogeneity.

INew programming paradigms developed for heterogeneous environments.
↪→Reproducible experiments are needed to compare them.

Our Approach

IUse dedicated machines to emulate multi-user environments.
↪→Easier to control.

IUse a load generator.
↪→A loaded machine mimics an heterogeneous one.
↪→A load pro�le can be used to emulate any heterogeneity.

Multi-user systems are dynamic heterogeneous platforms

00 04 08 12 16 20 00

 0
 2

 4
 6

 8
 10

 12
 14

 16

 0

 20

 40

 60

 80

 100

Load (%)

Full Day Load

Time (in hours)

CPU Core Number

Load (%)

Daily CPU load of a 16 cores server

Our goals

IReproducibility: obtain the same load load independently of the
environmental conditions.

IUnobtrusiveness: do not alter qualitative behavior of the system
(scheduler policy, I/O).

IPrecision and reactivity: produce realistic load pro�les in a
dynamic environment.

I avoid intrusiveness: additional load induced by the generator process must
be moderate.

How KRASH works: 5 steps to achieve cpuburner �xed share attribution

Timeslices Distribution

P1

P2

P3

P1

P2

P3

P1

P2

P3

P1
P2

P3

B

P1
P2P3

B

simple system group scheduling activated new group added cpuburner added to group group priority adjusted

tasks

P1

1

P2

1

P3

1

tasks

all_tasks

1

P1

1

P2

1

P3

1

tasks

all_tasks

1

P1

1

P2

1

P3

1

burner

1

tasks

all_tasks

1

P1

1

P2

1

P3

1

burner

1

B

1

tasks

all_tasks

1

P1

1

P2

1

P3

1

burner

1

B

2

Groups and Processus Hierarchy (with priorities)

Qualitative Comparison of Existing Solutions

General dynamic Side e�ects Arbitrary number Intrusiveness Resolution
load pro�le on scheduler of processes

KRASH Yes Negligible Yes Negligible Same as scheduler
Wrekavoc Not implemented Low No Active poll Higher than scheduler
Real time priority Not implemented High Yes Periodic wakeup Poor
Frequency scaling No Medium Yes Negligible Higher than scheduler

Kernel for Reproduction and Analysis of System Heterogeneity

IDesign:
I Use a burner process to steal timeslices from applications.
I Use a supervisor to ensure correctness of the load.

ITechnicalities:
I Use group scheduling to give timeslices to the burner independently of
the number of applications.

I Use noti�cations to cope with group updates.

KRASH Validation

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200

C
P

U
 L

oa
d

(%
)

Time (s)

CPU Load Generated
Reference Profile

Load generated by KRASH in concurrence with 10 NAS instances

Load Generators Obtrusiveness

Time to copy a �le
average standard Slowdown

deviation
None 10.2 0.8 1
KRASH 20.5 0.5 2
Wrekavoc 24.9 1.7 2.4
Real time priority 36.6 1.8 3.6
Frequency scaling 24.3 1.8 2.4

In�uence of a 50% load on �le copying (1GB) evaluated for several methods.

Conclusion

IKRASH generates a reproducible CPU load and provides more features than
previous solutions.

IFuture works will extend KRASH to other parts of a multi-user system
(memory, disk, network).

INRIA MOAIS Team, LIG Lab, Grenoble University http://krash.ligforge.imag.fr

http://krash.ligforge.imag.fr

